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Abstract. Due to the rapid increase in the complexity and scale of industrial systems, mainstream maintenance
models can no longer meet the demands of system operation. Condition monitoring and predictive
maintenance based on sensor and artificial intelligence technologies have become the dominant approaches.
Meanwhile, with the rapid development of technologies such as machine learning and digital twins, the
technical framework of intelligent maintenance systems is also gradually evolving. To address the
shortcomings of existing reviews, this paper aims to systematically examine the development trends,
applicable tasks, and existing challenges of different methods from the perspectives of maintenance objectives
and maintenance technologies, hoping to provide a guide for related research and industrial development.
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1. Introduction
Traditional industrial maintenance relies mainly on manual inspection and passive repair, which struggle to
meet the growing industrial needs and has the disadvantages of high cost and lack of predictive ability. The
introduction of condition monitoring marks the shift of maintenance methods to proactive maintenance.
However, early condition monitoring systems relied on simple thresholds and manually set rules, which often
failed to support real-time decision-making in real complex industrial environments. With the deep integration
of the Internet of Things (IOT), cloud computing and artificial intelligence, intelligent maintenance has
developed rapidly [1]. Especially in the past decade, the progress of machine learning and deep learning has
further transformed the maintenance model [2]. By analysing data (including sensor readings, equipment fault
records, and operation logs), subtle performance degradation trends can be detected before a fault actually
occurs, thus laying the foundation for anomaly detection and fault diagnosis. This progress mainly relies on
three factors. First, large-scale deployment of sensors enables continuous and detailed data acquisition.
Second, the application of digital twin technology enables synchronisation between physical devices and
virtual models, thereby achieving real-time simulation [3]. Third, the integration of edge computing brings
data processing closer to sensor nodes, reducing latency and improving response speed. The fusion of these
technologies forms the basis of intelligent maintenance systems, enabling traditional industrial production to
progress towards a more optimised operation and maintenance mode. Predictive maintenance technology
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based on artificial intelligence is developing rapidly, but most existing reviews still fail to provide a
comprehensive and systematic overview. To make up for this deficiency, this paper systematically reviews the
current research status, focusing on two interrelated dimensions: the core tasks of predictive maintenance
(such as fault detection, condition monitoring, and remaining useful life prediction) and the methods applied to
these tasks.

Contribution:
1. This paper systematically reviews the latest advancements in predictive maintenance, summarizes key

methodological breakthroughs, and identifies the main technical bottlenecks hindering the practical
implementation of these technologies.

2. This paper provides a structured analysis of the field from three perspectives: anomaly detection, fault
diagnosis, and remaining lifetime prediction, clarifying the conceptual boundaries of these core tasks and their
inherent connections within a unified methodological framework.

2. Core tasks and technological evolution
From the perspective of research objectives and technical implementation, intelligent maintenance comprises
three core tasks: anomaly detection, fault diagnosis, and lifespan prediction (as shown in Figure 1). Anomaly
detection first identifies anomalous data from the raw input data; fault diagnosis, based on this, determines the
type and location of the anomaly, providing a basis for subsequent health status assessments; lifespan
prediction utilizes the health information obtained in the first two stages to infer future degradation trends and
estimate remaining service life, supporting maintenance planning. Although these three tasks are progressive
in their workflow, they are independent in their research paradigms: anomaly detection typically employs
unsupervised or semi-supervised learning, fault diagnosis mainly relies on supervised methods for category
identification, while lifespan prediction operates through model-driven or data-driven time series and
degradation modelling methods.

Figure 1. Structure of this review
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2.1. Anomaly detection
Anomaly detection, as the first part of the workflow, aims to identify data that deviates from the normal
operating mode, enabling the system to detect abnormal states early and maintain flexibility to different
industrial scenarios. In actual industrial environments, fault samples are usually scarce and the cost of
collection is high, so relying entirely on supervised learning is not feasible. Therefore, unsupervised or semi-
supervised methods are more commonly used in engineering applications [4]. This technique is usually based
on two key assumptions: first, normal data exhibits a continuous and clustered distribution in the feature
space; second, the number of abnormal data is extremely small, and its distribution characteristics are
significantly different from those of normal samples. Based on the above assumptions, most models focus
more on learning the overall structure or boundary of normal behaviour rather than identifying specific fault
modes. When a new sample deviates from the normal mode, it is considered an anomaly [5]. In other words,
normal data forms a stable clustered distribution, while abnormal data is sparse and significantly different.
Therefore, the model detects samples that deviate from this structure by characterising the normal distribution
structure and makes anomaly judgments accordingly.

2.1.1. Technological evolution

2.1.1.1. Traditional statistics and signal processing
This established one of the early foundations of industrial anomaly detection. The basic idea is to use signal
processing tools to extract statistical features with clear physical meaning, and then determine the system state
based on thresholds set by experts.Time-domain: It is the simplest form of this approach. It looks directly at
statistical measures of the monitored signals, such as the mean, variance, peak value, skewness, and kurtosis.
Upper and lower limits are usually set by experience, and when any indicator goes beyond these limits, an
alarm is raised. The method is easy to compute and works well in real time, but it is not very sensitive to early-
stage faults [6] and has difficulty dealing with signals that vary widely with changing operating conditions [7].

Frequency-domain: It became possible as digital signal processing advanced, shifting the viewpoint from
the time domain to the frequency domain. The Fourier Transform is the tool most commonly used for this
purpose. It breaks a complicated time-domain waveform into a set of sine waves at different frequencies,
which makes the spectral structure of the signal easier to see. By looking at how the amplitudes of certain
frequency components change, periodic faults in rotating machines—such as imbalance or misalignment—can
be identified with good reliability. However, the Fourier Transform is a global operation and does not indicate
when a particular frequency component occurs in time. Because of this lack of time localisation, it has clear
limitations when the signal is non-stationary or contains sudden changes [8].

Time–frequency: It was introduced into anomaly detection to address the limits of using the frequency
domain alone. The Wavelet Transform uses a multi-scale way of looking at signals and can provide local
information in both the time and frequency domains at the same time [9]. Because it can localize events in
both domains, it is able to pull out weak, transient impulses even when they are buried in heavy noise [10],
which makes it well suited for detecting non-stationary and sudden signals caused by early-stage equipment
faults. Building on this, more accurate anomaly detection can be achieved by computing the energy or entropy
of the wavelet coefficients and setting dynamic thresholds.

2.1.1.2. Traditional machine learning
Compared with statistical methods that rely on a single threshold, traditional machine learning approaches
introduce a multi-dimensional feature space and employ geometric relationships among samples to establish
more refined decision mechanisms. According to their underlying assumptions, these approaches can be
grouped into several categories.Distance- and density-based Methods are built on the idea that normal samples
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tend to appear in regions of high density, whereas anomalous samples usually lie in sparse areas or maintain
large distances from their neighbours. K-Nearest Neighbours (KNN) is the most straightforward distance-
based approach. It uses the average distance between a test sample and its K nearest neighbours as its anomaly
score. Gao [11] refined KNN technique incorporating a soft incremental three-way decision strategy was
proposed for anomaly detection in network intrusion scenarios. However, in high-dimensional spaces, KNN
faces the difficulty that a single global distance threshold cannot adapt well to data with uneven density
distributions. To address this issue, Lu [12] introduced an algorithm called RkCNN. This method constructs
multiple kCNN classifiers by randomly selecting a subset of features from high-dimensional data, and then
combines them using a weighted scheme based on separability. This design helps reduce the performance loss
of traditional KNN in high-dimensional settings due to noisy features and reduced effectiveness of distance
metrics.

Clustering-based Mechanisms: These methods rely on the assumption that normal data forms clear cluster
structures in the feature space, while outliers either fall outside the main clusters or appear only as very small
micro-clusters. K-Means and its Variants are among the most commonly used benchmark algorithms. By
applying iterative optimisation, the data are divided into K clusters, and during testing, the distance from a
sample to the nearest cluster centroid is used as a measure of its anomaly level. Arin [13] integrated K-Means
with digital twin techniques to support anomaly detection and clustering in the context of industrial equipment
performance enhancement. Although K-Means offers high computational efficiency and is suitable for large
data sets, it relies on strong assumptions about cluster geometry, typically assuming spherical and convex
structures. As a result, it has difficulty modelling the non-convex or manifold-like distributions that frequently
appear in industrial data. In addition, outliers may shift the cluster centroids during training, which can reduce
the accuracy of anomaly detection [14].

Boundary- and isolation-based Methods It does not estimate data densities directly. Instead, they aim to
construct a decision boundary that separates normal instances from anomalous ones in an explicit manner.

One-Class Support Vector Machine (OCSVM): It applies a kernel function to project data into a high-
dimensional space and searches for a minimum-volume hypersphere, or an optimal separating hyperplane, that
encloses the normal samples. Any point falling outside this boundary is regarded as an anomaly. Li et al. [15]
applied OCSVM to the detection of post-earthquake building damage in high-resolution remote sensing
imagery, achieving one-class anomaly detection requiring only normal training samples by fusing spectral and
spatial features. Additionally, Bountzis [16] also integrated autoencoders with OCSVM, where the decision
scores of OCSVM were used to strengthen the autoencoder's ability to detect deviations from normal
behaviour. They further introduced a heuristic approach for tuning the OCSVM parameters based solely on
one-class data, and showed that this method performs well against previously unseen attacks in network
intrusion detection.

Isolation Forest: This method identifies outliers by gradually "isolating" samples through random binary
trees. It has linear time complexity and is suitable for high-dimensional data. Wang et al. [17] proposed an
improved Isolation Forest combined with binary particle swarm optimisation for detecting defects and hidden
dangers in power transmission lines, which significantly improved Area Under the Curve (AUC) and anti-
interference ability. Xiang et al. [18] proposed an anomaly detection method based on Isolation Forest under
the federated learning framework, which effectively alleviated the contradiction between data privacy and
collaborative detection in edge IoT scenarios. However, Monemizadeh et al. [19] identified the existence of
"ghost clusters" in traditional Isolation Forest and proposed a method involving the random rotation of data to
eliminate this bias, thereby improving anomaly detection accuracy.
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2.1.1.3. Deep learning
With the rapid increase in the dimensionality of industrial big data, the shortcomings of traditional methods
that depend on manual feature extraction have become more evident. Deep learning, with its strong ability for
end-to-end automatic feature learning, has gradually become a leading approach for anomaly detection.
According to how the models capture the underlying structure of the data, these approaches can be divided
into three main paradigms.Reconstruction-based Paradigm: This is the most mature framework currently used
in deep anomaly detection. It is built on the assumption that a model trained solely on normal data learns to
compress and reconstruct normal patterns, and thus produces noticeably larger reconstruction errors when
encountering anomalous patterns.

Autoencoders and their Variants: Zhou [20] applied unsupervised autoencoders to fuse features from multi-
modal data for aircraft sensor prediction. Denoising Autoencoders (DAE) are also used, where noise is added
to the inputs during training so that the model learns representations that remain stable under noise, which
helps prevent it from learning a trivial identity mapping. Qiu [21] constructed a deep learning framework
focused on DAE, which effectively reduced downtime and operational costs in practical applications.
Furthermore, Variational Autoencoders (VAE) introduce probability distribution constraints in the latent space,
enabling the model to learn the underlying manifold structure of the data rather than merely direct
spatiotemporal point-to-point mappings. Chen et al. [22] introduced a hybrid architecture that combines
Bayesian Long Short-Term Memory (LSTM) with deep generative models for multi-level anomaly detection
and fault prediction in diesel engine lubrication systems. Liu [23] developed a hybrid model that integrates
VAE with LSTM for sewage treatment systems, enabling the model to capture both the latent data distribution
and temporal dependencies and thereby achieve accurate anomaly detection. To address the issue that
conventional autoencoders may still reconstruct anomalous samples relatively well, recent studies have
proposed memory-augmented autoencoders, in which the model is constrained during training to reconstruct
inputs only from prototype features of normal samples stored in a memory bank. This design substantially
strengthens the model's ability to distinguish anomalous data. Chang et al. [24] incorporated a memory-
augmented module into a lightweight transformer architecture and applied it to video anomaly detection in
industrial vision or surveillance environments, achieving efficient and precise anomaly identification.

Prediction-based Paradigm: Methods in this category use prediction error as an anomaly indicator by
learning the temporal dynamics of normal data. Early work mainly relied on LSTM and GRU architectures,
while in recent years, transformers have become widely used due to their parallel computation capability and
their strength in modelling long-range dependencies. Liu et al. [25] introduced a transformer model that
incorporates global attention and reconstruction-trend analysis for multivariate time-series anomaly detection.
Zhang et al. [26] combined time-series decomposition with a patch-based transformer to model normal
patterns in complex time-series data and detect anomalies. Owing to the self-attention mechanism, the
transformer can capture long-range temporal correlations across the sequence and shows strong performance
in trend prediction under complex operating conditions.

Generative model-based Paradigm: Approaches in this category detect anomalies by modelling the
distribution of normal data. GANs learn the boundary of this distribution through the adversarial interaction
between a generator and a discriminator, whereas diffusion models—owing to their stepwise denoising and
precise distribution modelling—have shown strong potential in image and signal anomaly detection. Riaz et
al. [27] employed an industrial anomaly detection framework that incorporates a Wasserstein GAN to identify
minority classes within highly imbalanced IIoT data. Beizaee [28] enhanced the diffusion model by treating
anomalies as noise in the latent space and introducing a selective region transformation mechanism, making
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anomalous areas easier to distinguish and improving performance in multi-class image anomaly detection
tasks.

2.1.2. Challenges
Significant breakthroughs have been achieved in anomaly detection technology, but its large-scale application
in real-world industrial environments still faces several key challenges that require further overcoming.

Insufficient Generalisation Ability under Complex Conditions: Industrial environments are dynamic;
fluctuations in factors such as load, speed, and temperature can cause data distribution shifts. Traditional
methods, relying primarily on fixed thresholds and static features, often perform poorly in such situations.
While deep models can extract features, their performance depends on the data distribution during training and
testing. When encountering unknown operating conditions, they may misclassify normal, unknown conditions
as anomalies.

Severe Sample Imbalance: Equipment operates normally most of the time, resulting in scarce and
incomplete fault samples. Unsupervised methods lack prior fault knowledge, making it difficult to identify
normal but rare behaviours. Start-up and shutdown processes or slight load changes are often mistaken for
faults.

2.2. Fault diagnosis
Fault diagnosis seeks to recognise known fault patterns and is generally carried out using supervised learning,
in which a model learns the mapping from input signals to fault categories based on a large amount of labelled
data. When labels are sufficient, such approaches can achieve high accuracy. To improve adaptability across
different operating conditions and equipment types, transfer learning has been widely employed; for example,
Li [29] provides a systematic overview of the theories, applications, and challenges of deep transfer learning in
industrial fault diagnosis. Few-shot learning addresses situations where labelled samples are extremely
limited. Liu [30] used Fourier features together with temporal convolutional networks to perform few-shot
bearing fault identification. More recently, self-supervised learning has become an important research
direction. Song [31] proposed pretraining models using contrastive learning or reconstruction tasks, followed
by fine-tuning with a small amount of labelled data, which improves diagnostic performance under sparse
annotation and varying operating conditions.

2.2.1. Technological evolution path
2.2.1.1. Signal processing and mechanisms
Before artificial intelligence became widely used, fault diagnosis depended mainly on physics-based
mechanistic models and signal processing techniques. These approaches applied mathematical transformations
to convert time-domain signals into the frequency or time–frequency domains in order to extract and match
specific fault features. Spectral analysis is the most fundamental technique [31] and is used to diagnose
imbalance or misalignment in rotating machinery by examining amplitude changes in the fundamental
frequency and its harmonics. For modulated impulse signals produced by components such as bearings,
envelope analysis [32] and cepstrum analysis are widely employed because they can demodulate fault-related
frequencies that are hidden within resonance bands.

2.2.1.2. Classical machine learning methods
During the development of fault diagnosis, classical machine learning methods played a pivotal role in the
transition phase from signal analysis to intelligent identification. The core framework of this phase consists of
two components: first, relying on expert knowledge to manually extract features from raw signals (e.g., time-
domain statistics, frequency-domain energy, or wavelet coefficients); and second, feeding these engineered
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feature vectors into a supervised classifier for training. Support Vector Machine (SVM): SVM achieves
classification by finding a hyperplane that maximizes the inter-class margin. It can flexibly handle nonlinear
feature relationships through kernel function mechanism. This method is particularly suitable for scenarios
with limited sample size but high feature discrimination [33].

Random Forests: As an ensemble learning method, it completes classification by constructing multiple
decision trees and using a voting mechanism. It has strong noise resistance and insensitivity to high-
dimensional features, and has high robustness under complex working conditions or multi-source sensor data.
In addition, it can evaluate the importance of features and provide a basis for feature selection [34].

In addition, algorithms such as k-nearest neighbours, Naive Bayes and Extreme Gradient Boosting
(XGBoost) have also been widely used. In general, these traditional methods have laid the foundation for data-
driven fault diagnosis; however, their fundamental limitation is that the diagnostic effect is highly dependent
on the quality of extracted features, and the over-reliance on expert experience [35] and the inability to
accurately represent complex systems [36] are areas that need improvement.

2.2.1.3. Deep learning methods
Supervised learning-based deep learning methods eliminate the need for manual feature extraction, as neural
networks can directly learn useful features from the raw signal. This directly improves the ability to model
complex systems.

Convolutional Neural Networks (CNNs): It uses convolution and pooling operations to extract local spatial
patterns from signals or from time–frequency representations such as spectrograms. By learning these patterns
directly from raw vibration data, CNNs have led to marked improvements in the accuracy of rolling bearing
fault diagnosis [37].

Recurrent Neural Networks: It aims to model how the features of a time series evolve over time. Such
models are well suited to long-duration signals that describe equipment operating conditions, including
measurements such as temperature, rotational speed, and energy consumption. Iqbal [38] introduced an
LSTM-based variant that maintains good diagnostic performance even when only a small number of labelled
samples are available, and is particularly designed for data collected under varying operating conditions.

In addition, many studies have explored combining different methods to build hybrid architectures. Fu [39]
designed a parallel CNN–LSTM network in which the CNN extracts spatial features from time–frequency
representations, while the LSTM models temporal correlations in one-dimensional signals. This combination
improves both the accuracy and the robustness of rolling-bearing fault classification. Other work [40] further
improves diagnostic performance under non-stationary vibration signals by incorporating attention
mechanisms to highlight important segments of the signal or by using residual connections to construct deeper
and more stable networks [41].

2.2.1.4. LLM-based fault diagnosis
Fault diagnosis based on Large Language Models (LLM) represents a new approach for the evolution of data-
driven methods [42]. Its core idea lies in leveraging the powerful language understanding and reasoning
capabilities of the model. LLM is used for pre-training and learning prior knowledge in relevant domains to
convert measurement data into textual descriptions during the diagnostic process, and these descriptions are
then correlated with fault logs to ultimately generate diagnostic results that are easier for humans to
understand.

Currently, LLM-based diagnostic research mainly focuses on two directions: knowledge assistance and
semantic enhancement. On the one hand, LLM is used to build intelligent maintenance assistants, enabling
technicians to query fault causes or obtain maintenance steps through natural language. Liu et al. [43]
proposed a maintenance decision framework based on Retrieval-Enhanced Generation (RAG), in which LLM
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improves the accuracy of question answering and can more effectively extract relevant maintenance strategies
from technical manuals. On the other hand, LLM can also be integrated with traditional deep models to
achieve knowledge-enhanced diagnosis. In such methods, the output of CNNs can be associated with semantic
knowledge bases, thereby improving the clarity and reliability of diagnostic results.

In the future, LLM hold greater application potential in multimodal data fusion, industrial knowledge graph
construction [44] , and human-machine collaborative maintenance.

2.2.2. Challenges
While significant breakthroughs have been achieved in fault diagnosis technologies, numerous challenges
remain in real-world industrial scenarios.

Difficulty in Distinguishing Similar Faults: Many fault types (e.g., inner ring spalling versus minor outer
ring cracks) produce signals with minimal differences. These differences become even more difficult to detect
in noisy and rapidly changing environments. Models relying solely on automatic feature extraction often
struggle to effectively differentiate such faults.

Limited Ability to Identify Unknown Faults: New fault types constantly emerge in real-world applications.
However, most models are trained on a fixed set of known categories, and due to a lack of explicit judgment
mechanisms, they often categorize unknown faults into these existing categories. Effective diagnostic systems
need to update their judgment criteria for unknown fault patterns based on constantly changing operating
conditions and data.

Limitations of LLM in Industrial Diagnostics: Despite the powerful reasoning capabilities of large
language models, their application in industrial diagnostics faces numerous limitations due to their
requirement for large amounts of industrial data, their susceptibility to AI illusions, and the stringent data
security requirements of industry. Therefore, LLM as a standalone diagnostic system still faces significant
challenges.

2.3. Remaining Useful Life prediction
The purpose of Remaining Useful Life (RUL) prediction is to estimate the remaining time before a component
or system fails, based on its current degradation state. This information is important and fundamental for the
planning and allocation of maintenance resources.

RUL prediction methods are generally classified into three categories:
Model-driven Methods: These methods build degradation models based on physical formulas. They offer

high interpretability, but due to the complexity of some systems' mechanisms, the physical models are difficult
to describe explicitly analytically, thus presenting a significant limitation.

Data-driven Methods: These methods learn degradation patterns directly from historical observation data
through statistical learning or deep learning. They are well-suited for high-dimensional and multimodal data,
but heavily rely on sufficient labelled samples and typically have limited interpretability.

Hybrid Methods: These methods combine elements of model-driven and data-driven frameworks—for
example, embedding physical constraints into data-driven models or using neural networks to correct errors in
mechanistic models. They tend to perform well under complex operating conditions and with limited data.

2.3.1. Technological evolution
2.3.1.1. Model-driven methods
The development of model-driven approaches moved from analytical formulas to simulation. Early research
often relied on analytical degradation models, such as using Paris's law to describe fatigue crack propagation.
These formulas provide deterministic mathematical expressions that reflect the underlying physical
mechanisms of degradation. Recently, Jia [45] introduced a modified version of the deterministic Paris model
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and applied it to fatigue failure analysis in concrete structures. As ideas from control theory entered the field,
state-space modelling and filtering techniques became widely used. By defining state-transition equations and
applying algorithms such as Kalman or particle filtering, these methods enable dynamic tracking of equipment
health and probabilistic forecasting of its future degradation path.

2.3.1.2. Data-driven methods
Data-driven approaches have progressed from shallow statistical techniques to deep representation learning.
Early work mainly used traditional machine learning models such as Support Vector Machines (SVMs) and
Random Forests, which depended on handcrafted features for regression-based RUL estimation. With the rise
of deep learning, architectures including Convolutional Neural Networks (CNNs), Long Short-Term Memory
(LSTM) networks, and transformers made it possible to learn multi-scale features directly from raw signals,
reducing the need for manual feature design. Xu [46] introduced a transformer-based hybrid model that
achieved strong performance in aero-engine RUL prediction, obtaining very low Root Mean Square Error
(RMSE) and Mean Absolute Percentage Error (MAPE). Zhao [47] proposed an interpretable Kernel Function
Convolutional-Former (KFC-Former), which combines phase-space reconstruction with a Convolutional-
Transformer structure and demonstrated high accuracy in RUL prediction tasks. More recently, research has
begun to address the challenges posed by data silos and distribution differences. Reinforcement learning and
transfer learning have attracted increasing interest, with the aim of improving generalisation across varying
operating conditions, different equipment types, and few-shot scenarios through domain adaptation or meta-
learning strategies.

2.3.1.3. Hybrid methods
The development of hybrid approaches stems from the attempt to find an effective balance between physical
modelling and data-driven learning. Early research mainly introduced physical constraints into the learning
process, for example, using principles such as energy conservation or monotonic degradation limits for
regularisation to guide neural networks toward the correct degradation pattern [48]. With the deepening of
research, Physical Information Neural Networks (PINNs) have become an important research direction. These
models directly embed physical partial differential equations into the loss function or network structure to
ensure that the prediction results are consistent with the underlying physical laws [49]. This deeper integration
improves the interpretability of the model and enhances its robustness, still be better than other models even
with limited data or noise contamination. More recently, advances in simulation have brought renewed
attention to digital-twin-based physical modelling. By using multi-physics simulation platforms to build high-
fidelity virtual replicas of equipment [50], this approach allows for detailed simulation and prediction of
system behaviour across its entire lifecycle.

2.3.2. Diversified expansion of prediction objectives
While Remaining Useful Life (RUL) prediction is a central indicator in predictive maintenance, a single time-
point estimate is often not sufficient for complex industrial decision-making. As a result, practical prediction
tasks have expanded to include several complementary objectives, such as assessing health states and
estimating failure risk.

Health State Measurement: In the presence of heterogeneous data from multiple monitoring sources,
establishing a direct relationship between high-dimensional signals and service life can be difficult. For this
reason, constructing a virtual measure that reflects the overall degradation condition—commonly referred to as
a Health Index—has become an important step linking raw data with life prediction models. Perry et al. [51]
proposed a two-stage framework for guided-wave monitoring of aerospace composite structures, using an
unsupervised Deep Time-Contrastive Variational Autoencoder (DTC-VAE) model to derive health indicators
from time–frequency features, which led to clear performance gains.
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Equipment Failure Risk: Reliability assessment aims to estimate the probability of failure occurring in a
future time window. Such tasks often use Bayesian inference to generate reliability curves or confidence
intervals [52]. In some fields such as aerospace, which focus on safety, using failure probabilities over a
specific time period is more accurate than using a single estimate [53].

2.3.3. Challenges
Because RUL prediction tasks require time-series data to predict the future state of equipment, it faces more
significant technical challenges than diagnostic tasks.

Lack of Complete Lifecycle Data: Accurate predictions rely on datasets covering all stages of failure. But
in industrial scenarios, the frequency of actual failures is low due to regular maintenance, replacement, or
repairs. Therefore, models have limited understanding of post-failure patterns, limiting the accuracy of their
predictions.

High Uncertainty of Future Outcomes: RUL tasks require predicting future stochastic behaviour. Variations
in operating conditions, noise, and model bias all affect the predictions. Models often fail to reflect actual risk
levels. Most deep learning models also lack reliable methods for quantifying prediction uncertainty, making it
difficult to provide credible confidence intervals, thus reducing the practical value of some strategies.

Recovery Phenomena During Degradation: Equipment in industrial scenarios does not always degrade.
Certain maintenance measures or specific conditions may temporarily lower certain indicators, producing
misleading recovery signals. These fluctuations affect model evaluations, leading to an overestimation of the
remaining RUL and increasing safety risks.

3. Conclusion
This paper reviews the development of intelligent maintenance in three core tasks, their foundational
technologies, and main challenges currently faced. Future research can further deepen this review, constructing
a theoretical framework from a more systematic perspective to promote the comprehensive organisation and
development of this field.
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