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Abstract. Large Language Models (LLMs), which are capable of generating diverse expressions or reasoning
paths, are fundamentally limited by their reliance on Parametric Memory and hence suffer from the
'hallucination' problem. That is, LLMs are capable of generating false yet plausible statements that are not
grounded in reality, which is problematic for scientific and clinical use. A popular solution for alleviating this
problem is the Retrieval-Augmented Generation (RAG) technique. However, the retrieved sources are still
large passages of semi-unstructured documents, and rigorous, verifiable, and logically coherent reasoning
processes are still lacking. In this review, we summarise the latest progress in the direction of Knowledge
Graph-Augmented Generation (Graph-RAG) as an attempt to achieve rigorous, verifiable, and logical
reasoning processes using structured retrieval sources. We design a computation framework to provide a
comprehensive taxonomy, classifying Graph-RAG methods into three areas: Graph Indexing, Graph Guided
Retrieval, and Graph Enhanced Generation. We also discuss in depth the potential future directions for Graph-
RAG, with an emphasis on moving beyond simple retrieval towards causal graph reasoning and actionable
graphs. Finally, we present the main challenges in scaling Graph-RAG and its evaluation protocols, and
conclude that Graph-RAG is a critical step toward trustworthy Al.
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1. Introduction

The advent of GPT series [1], Llama [2], and Claude [3] marks the rise of Large Language Models (LLMs),
ushering in a new Al era. Equipped with vast web-scale text corpora, these models demonstrate remarkable,
albeit unplanned, power across a wide array of tasks, including reasoning, fluent human language generation,
and few-shot learning [4]. Moreover, these impressive capabilities allow them to serve as the foundation for a
new breed of applications, including intelligent search engines [5], robotic chatbots, and even scientific
discovery tools [6].

However, despite their strengths, they are hindered by a significant flaw that prevents their reliable use in
sensitive environments such as health care, finance, and engineering. This flaw is hallucination [7, 8], where
models have a tendency to generate text that is seemingly reasonable and plausible but is actually false,
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unverifiable, or even completely detached from the source context [9]. In essence, hallucination substantially
impedes the trustworthiness of an LLM's outputs [10]. This "black box" nature, where all information is
concentrated in billions of parameters, leads to several important challenges. First, the models are prone to
factual errors, "hallucinating" statistically plausible but incorrect facts, references, or data points [11]. Second,
they are subject to a knowledge cut-off, as model knowledge is frozen and outdated at the end of training,
rendering them incapable of perceiving up-to-date or recent information [12]. Third, they offer no verifiability;
it is typically impossible to trace the provenance of a specific factual claim made by a large language model,
rendering its outputs unfit for high-stakes decisions [13].

To overcome these limitations, Retrieval-Augmented Generation (RAG) has emerged as the standard
solution [14]. Its core concept is straightforward: shift knowledge from the opaque "parametric" memory
inside the model's weights to an explicit "non-parametric" external knowledge source. In a typical RAG
process, a user's question will first trigger a retriever (for example, the Dense Passage Retriever (DPR) [15]) to
search through a large amount of information (usually a vector database). The system extracts the most
relevant text segments and combines them with the original question to form an expanded query [16]. The
large language model is then instructed to generate an answer using only the provided context. This grounding
mechanism, anchoring responses in verifiable external sources, has become the standard approach for building
knowledge-intensive applications.

However, standard RAG is no silver bullet. Its effectiveness is limited by the type of knowledge sources it
uses: unstructured text [17, 18]. Raw text fragments are retrieved, which introduces issues such as noisy
retrieval, where relevant facts may be buried within long, unrelated passages [19]. Additionally, unstructured
text lacks the structural expressiveness required for handling complex queries that require multi-hop
reasoning. For example, a query such as "Which drug inhibits protein A known to activate protein B?" cannot
be answered by a single text fragment, as it requires finding and combining two separate but related pieces of
information. Thus, large language models suffer a considerable drop in performance when accurate facts are
located deep within extensive retrieval contexts — a phenomenon referred to as "getting lost in the middle"
[20].

Table 1 provides a full comparison between traditional Text-RAG and the emerging Graph-RAG paradigm,
illustrating how the underlying information-processing and reasoning mechanisms differ.

Table 1. Comprehensive comparison between Text-RAG and Graph-RAG

Feature Text-RAG (Standard) Graph-RAG (Proposed)
Data Source Unstructured text chunks (documents) Structured knowledge graphs (entities & relations)
Retrieval Unit Vector-based text segments Nodes, edges, subgraphs, and paths
Reasoning Capability Implicit, co-occurrence based Explicit, multi-hop, logical traversal
Explainability Low (black box retrieval) High (traceable reasoning paths)
Noise Sensitivity High (irrelevant info in chunks) Low (precise extraction of facts)
Context Efficiency Prone to "Lost in the Middle" Compact, structured schema representation

The central thesis of this study is that the next frontier for trustworthy Al lies in overcoming these
limitations by using structured symbolic Knowledge Graphs (KGs) [21] as a non-parametric knowledge
source. We term this paradigm Graph-RAG, which is key to achieving precise, verifiable, and complex
reasoning. Knowledge graphs store information as explicit, discrete facts (e.g., Protein A, Inhibits, Drug X).
Compared to text-based RAG, enhancing large language models with knowledge graphs offers three major
advantages: precision, because the system retrieves single, distinct pieces of information or small subgraphs
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instead of messy text fragments; multi-hop reasoning, because graphs naturally support complex queries (such
as "A—B—C") through structured traversal; and verifiability, because retrieval paths or subgraphs form a
formal, machine-readable "chain of evidence" that clearly demonstrates how the generated answers are
derived.

This paper presents a structured review of the rapidly evolving research area of schema-based RAG, which
structures the topic by connecting basic concepts, important technologies, and key issues. In more detail, the
review is organised as follows: Section 2 establishes the background for KGs [21, 22], formalising their
structure and providing key public examples [23-26]. Section 3 examines the core technologies for
computational use of knowledge graphs: knowledge acquisition [27-29], knowledge completion [30-32], and
graph representation using Graph Neural Networks (GNNs) [33-35]. Section 4 discusses the phenomenon of
hallucination in LLMs and how they are classified [7, 8] and evaluated [36, 37]. Section 5 reviews classical
[13] and advanced text-based RAG frameworks [17, 18, 38]. Section 6, the main chapter, introduces a
classification system for the latest graph RAG, categorising techniques according to different approaches to
indexing, retrieving, and generating [39-46] (including hybrid approaches [46]). Section 7 explores future
directions, such as causal reasoning [47-51] and the development of dynamic, evolving graphs [52-55]. Lastly,
Section 8§ discusses current problems [56-58] and outlines promising avenues for future work.

2. Foundations: Knowledge Graphs (KGs)

Before we can appreciate how Graph-RAG addresses LLM hallucinations, we need to understand the tool at
the heart of the solution: the Knowledge Graph (KG). Whereas unstructured text represents information as
loosely organised sequences of words with relationships only implicitly embedded, a Knowledge Graph
provides a precise, structured map of facts. It links concepts and their connections explicitly, eliminating
ambiguity. This section explains what a KG formally represents and traces how these graphs evolved from
early academic constructs into foundational components of modern intelligent systems.

2.1. Formal definitions and structure

At its simplest, a Knowledge Graph is a network of facts. We can think of it formally as a graph
G = (E,R,T) [21], but its essential components can be described as follows:

* Entities (E): These constitute the "nodes" or dots of the graph and correspond to well-defined real-world
or conceptual objects, such as "Aspirin", "New York City", or "Inflation".

* Relations (R): These are the lines that connect the dots. They tell us exactly how two things are connected
(for example, "treats", "located at", "causes").

* Triples (T): These are the most basic units of knowledge. A triple is simply a sentence: (Subject,
Predicate, Object).

Consider the biological statement, "Rapamycin inhibits mTOR". In unstructured text, this information may
appear in various forms of language. However, in a KG, it is represented as a single, unambiguous triple:
(Rapamycin, inhibits, mTOR). This format is powerful because it enables the computer to take action beyond
word matching; instead, it can follow a path and resolve questions based on logical graph traversal and
inference [22]. It transforms variable natural language into a precise, machine-interpretable structure.

2.2. Key characteristics

Why construct these graphs when one could simply provide raw text to an LLM? The literature identifies three
clear advantages. The first is semantic explicitness. Human language is inherently ambiguous, with many



24 | Advances in Engineering Innovation | Vol.17 | Issue 2

terms carrying multiple meanings dependent on context. In a KG, a relation such as "treats" has a fixed,
domain-specific definition. This explicitness acts as a guardrail, preventing the LLM from hallucinating based
on the most probable definition. The second advantage is multi-hop connectivity. Complex questions often
require linking information across several intermediate concepts. For example, if a doctor asks, "What disease
does a drug targeting protein X treat?", one must traverse Drug->Protein->Pathway->Disease. KGs are
explicitly designed to support such multi-step reasoning, mirroring experts' analytical processes. Lastly, KGs
provide interoperability. In practice, the same concept may be referred to by many different names; for
example, Tylenol, Acetaminophen, and APAP all refer to the same drug. A KG consolidates these synonyms
under a single unique identifier, ensuring that the system does not overlook relevant information simply
because of terminological variation.

2.3. Major public Knowledge Graphs

The large Knowledge Graphs used today did not emerge fully formed. They developed through a long process
of development, starting with rigid, handmade regulations and evolving into the large-scale, community-
generated graphs that we have today.

* This period also includes the beginning of the "Gene Ontology" (GO) project [23]. It was a pivotal
moment for biology: the field recognised that a shared, structured vocabulary could unify biological
knowledge across species and systems.

— The Big Picture: It demonstrated that domain-specific graphs could be deployed successfully and laid the
foundations for the scientifically rigorous graphs now used in Graph-RAG.

» After GO came Freebase [24] and the work of Bollacker and colleagues, who proposed that the
community should construct a "graph of everything". Freebase was intentionally broad and flexible, a
significant departure from earlier, narrowly scoped academic ontologies.

— Significance: Its success led to Google acquiring it in 2010, and it became the basis of the Google
Knowledge Graph launched in 2012. This demonstrated that graph technology can scale to encompass the
breadth of the web.

* The period beginning in 2012 marks the Open Data Era (Wikidata and DBpedia). The launch of Wikidata
[25] in 2012 and the continued evolution of DBpedia [26] made structured knowledge widely accessible at an
unprecedented scale.

— Wikidata is now ubiquitous and serves as the backbone for many sites, including Wikipedia, supported by
a global community of editors.

— DBpedia extracts structured "infobox" data from Wikipedia articles.

— Together, these projects provide the breadth and diversity needed to train modern Al systems and our
Graph-RAG models with the extensive grounding required to answer general knowledge questions with
scientific defensibility.

This trajectory illustrates the evolution from small, rigid graphs to large, flexible, and richly interconnected
graphs. Al researchers no longer need to build such resources from scratch; mature, high-quality graphs are
readily available. These are the very resources that enable us to embed structured representations of reality
into large language models.

Figure 1 illustrates the evolutionary timeline of Knowledge Graph technologies, culminating in the current
Graph-RAG paradigm.
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Figure 1. Evolution of Graph-RAG technologies

3. Core technologies: KG construction and representation

Having a map is of limited value without the ability to construct or interpret it. This section outlines the core
technological foundations underlying Graph-RAG: the extraction of structured facts from unstructured text
(Construction), the inference of missing information (Completion), and the transformation of symbolic graph
structures into numerical representations suitable for machine learning (Representation).

3.1. Knowledge Extraction (KE): from pipelines to LLMs

The construction of Knowledge Graphs (KGs) begins with Knowledge Extraction (KE), which identifies
entities and their semantic interrelations by mining unstructured text. Between 2007 and 2020, this was
typically referred to as the Traditional Pipeline. This process begins with Named Entity Recognition (NER)
and concludes with Relation Extraction (RE), which predicts connections between entities. Relation Extraction
(RE) was achieved in 2007 with Open Information Extraction (OpenlE) [27] when Banko et al. removed the
dependence on hand-labelled datasets and enabled systems to extract relational facts directly from web-scale
corpora. However, their systems produced large amounts of noisy data, which had to undergo profiling to
remove noise.

The emergence of LLMs (2023 - Present) has fundamentally transformed this landscape. Instead of training
separate specialised models for NER and for RE, LLMs can function as "general-purpose annotators", capable
of performing one-shot or zero-shot extraction. Recent reviews [28, 29] demonstrate that LLMs can reliably
extract structured biomedical relations such as drug-target pairs, substantially reducing the complexity of
constructing high-quality KGs.

3.2. Knowledge Graph Completion (KGC): filling the gaps

There is no such thing as a perfect map. Real-world knowledge graphs are inherently sparse: they may know
that "Drug A treats Disease B", while omitting that "Drug A also blocks Protein C". Knowledge Graph
Completion (KGC), a form of link prediction, uses machine learning to infer such missing facts.

* 2013: Geometry of Knowledge (TransE). Bordes et al. introduced TransE [30], a seminal model based on
a simple geometric intuition: if Head + Relation = Tail, then relations can be modelled as translations in a
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vector space.

— Impact: This enabled logical reasoning to be approximated through vector arithmetic. However, the
model struggled with complex relational patterns, such as one-to-many mappings (e.g., a single director
associated with multiple movies).

* 2016-2019: Handling Complexity (ComplEx & RotatE). Researchers extended TransE to address its
limitations.

— ComplEx [31] uses complex numbers to deal with asymmetrical relationships (e.g., "is the father of").

— RotatE [32] does not treat relations as translations, but rather as rotations in a complex vector space,
enabling the model to naturally capture symmetry and inversion.

3.3. Graph Representation Learning (GRL): teaching networks to "see" graphs

Once a graph has been constructed, it must be encoded in a form suitable for neural computation. Graph
Neural Networks (GNNs) address this need by learning vector representations for nodes that capture both their
intrinsic properties and their structural context within the graph.

* 2017: GCN revolution. Kipf and Welling introduced the Graph Convolutional Network (GCN) [33],
which formalised a simple yet powerful principle: a node's representation should be derived from an
aggregation of information from its neighbours.

— Limitation: Standard GCNs treat all neighbouring nodes uniformly. In a knowledge graph, however,
different relations carry different semantic significance; a "friend" relation should not be considered the same
as an "enemy" relation.

* 2018: Adding Attention and Relational Awareness (GAT & R-GCN). The field rapidly evolved to address
the particular requirements of KGs.

— Graph Attention Networks (GAT) [34] introduced an "attention mechanism" designed by Veli¢kovi¢ et al.
This allows nodes to focus on important neighbours and ignore irrelevant ones, which is essential when
filtering noise in Graph-RAG.

— Relational-GCN (R-GCN) [35] incorporated explicit modelling of relation types into the GCN
architecture. Given the importance of ensuring the model is aware of the significance of different types of
connections, this method has become the leading approach for processing knowledge graphs.

4. The problem: LLM hallucination

Once we have a solid understanding of graph theory, we turn to an immediate concern: the phenomenon of
hallucination. Although large language models demonstrate impressive capabilities, they continue to pose
significant risks. This section examines the underlying causes of false or unfounded model outputs and
outlines methods for their identification.

4.1. Defining the problem: intrinsic vs. extrinsic

The literature distinguishes between two types of hallucination-related errors [7]. An intrinsic error arises
when the model contradicts information explicitly present in the source. For example, if a document states,
"Apollo 11 landed on the moon in 1969", but the model summarises this as "Apollo 11 landed on the moon in
1970", this discrepancy constitutes an intrinsic error. An extrinsic error occurs when the model introduces
information unsupported by the source, for instance, inventing details about Armstrong's hobbies when the
document contains none. Extrinsic errors therefore involve statements that cannot be supported by the
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available context. In high-stakes domains such as scientific research, the most concerning category is Factual
Hallucination [10], where the model produces content that is objectively false.

4.2. Root causes: why do models hallucinate

Recent surveys [8] identify three primary sources of hallucination in the LLM lifecycle. First are data issues:
web-scale training corpora contain misinformation, bias, and fictional material, which the model learns to
imitate. Second, are training dynamics: LLMs are designed to maximise the probability of the next word rather
than factual accuracy. If there's an error that has some statistical likelihood (like a common misconception),
then the model will produce that content. Lastly, inference stochasticity: the decoding procedure (sampling)

introduces randomness. While beneficial for creativity, it can degrade factual reliability [13].

4.3. Measuring the truth

Reliable mitigation requires reliable measurement. Standard metrics such as BLEU or ROUGE assess surface-
level lexical overlap rather than factual correctness.

* TruthfulQA: Lin et al. [36] introduced a benchmark designed to expose models' susceptibility to human
fallacies and misconceptions, demonstrating that larger models can be less truthful due to broader
memorisation.

» HaluEval: Li et al. [37] released a large-scale dataset for evaluating a model's ability to avoid
hallucinations.

5. The initial solution: Retrieval-Augmented Generation (RAG)

To address the recurring problem of hallucination, the Al community adopted a strategy similar to human
problem-solving: consulting external references. This approach, known as Retrieval-Augmented Generation
(RAG) [13], reduces reliance on a model's imperfect internal memory by grounding responses in verifiable

external sources.

5.1. The anatomy of standard RAG

The RAG pipeline, introduced by Lewis et al. [13] and improved by dense retrievers such as DPR [15],
operates under the "Retrieve-then-Read" model. In indexing, trusted source documents (e.g., medical
textbooks and company wikis) are segmented and embedded into a vector space for storage. During retrieval, a
user query is converted into a numerical vector representation and compared against the database to identify
the top-k most relevant segments. Finally, in generation, the extracted documents are pasted into the prompt
context of the LLM. The response generated by the model is constrained by the available information, making
it accurate.

5.2. Advanced RAG techniques

As researchers sought to overcome the limitations of the basic pipeline, a range of "advanced RAG" methods
emerged [17]. Pre-Retrieval Optimisation addresses users' propensity for asking unclear questions. Query
rewriting techniques [38] leverage an LLM to clarify or expand users' questions before they reach the vector
database, yielding better search results. Post-Retrieval Refinement ensures that only the most relevant material
is passed to the LLM. Reranking models [18] act as a quality control step, re-ranking the retrieved passages so
that the most relevant content is provided to the LLM, thereby reducing noise.
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5.3. Why text RAG fails at reasoning

Despite engineering improvements, text-based RAG remains fundamentally limited in its ability to support
complex reasoning [20]. The core reason is that it treats knowledge as isolated textual fragments rather than as
a structured system.

Consider a multi-hop question: "What drug targets the protein that is controlled by Gene X?" Suppose two
documents exist:

* Document A says: "Gene X regulates Protein Y."

* Document B says: "Drug A targets Protein Y."

Text RAG may retrieve both documents, but it relies on the LLM to infer the connection. If the two facts
are buried in long-form passages, or if the "bridge entity" (protein Y in this case) is replaced by various
synonyms, the model often fails to infer the relationships. It may find the puzzle pieces, but it has no
scaffolding to arrange them. This is precisely the type of structural void that Graph-RAG is designed to
address.

6. The frontier: Graph-RAG (knowledge Graph-augmented generation)

This section marks the transition to current research frontiers. Whereas standard RAG resembles keyword
lookup in a textbook index, Graph-RAG is similar to consulting domain experts who follow a coherent chain
of reasoning. Instead of using (or adding to) a list of plain text documents, the system fetches reasoning paths
— explicit chains of evidence — rather than individual pieces of text.

Figure 2 visualises the unified architecture of the Graph-RAG framework, demonstrating the flow from
user query to final answer through graph-guided processes.
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Figure 2. Unified architecture of Graph-RAG

6.1. Why graphs change the game

Graph-RAG is not merely a shift in storage format; it represents a fundamental change in what is retrieved and
how reasoning is supported. First, it offers precision: instead of retrieving lengthy, noisy paragraphs, the
system can provide discrete factual units such as Drug A, treats, Disease B. Secondly, it gives connectivity: the
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graph structure connects the gaps that may be dispersed across multiple documents, enabling the model to
traverse from one fact to another and access the relevant information. Lastly, it guarantees explainability: the
retrieved subgraphs act as a roadmap for the model's "thought process", making it clear which facts ultimately
resulted in the conclusion.

6.2. A taxonomy of Graph-RAG architectures

Recent comprehensive surveys [39-41] categorise the various Graph-RAG landscapes into three different
stages of intervention.

Stage 1: Graph-based indexing (sourcing). This stage concerns how information is organised prior to
retrieval. The Microsoft Approach [42] constructs a graph from documents by extracting entities using LLMs
and organising them into different levels of a community hierarchy. This creates a multi-ordered index and
enables the model to respond to "global" inquiries, for example, identifying the key themes of a given dataset.
This is achieved by making generalisations across entire graph communities, which is an improvement over
the capabilities of traditional vector search.

Stage 2: Graph-Guided Retrieval (Understanding the Reasoning). Here, the system utilises the structure of
the graph in its search. Think-on-Graph [43] introduced an agentic paradigm, in which LLMs do not perform
isolated lookups but instead "walk" through the graph as if they were independent agents. From a given node,
they look at adjacent nodes, determine if a pathway exists, and then advance a step. This form of iteration is
analogous to human reasoning, which enables the model to tackle complex problems that require advanced
structuring. Similarly, in addressing complexity, Atomic Decomposition [44] decomposes complex queries
into smaller, more manageable "atomic" constituents. This is analogous to resolving complex equations by
performing simpler, constituent arithmetic operations. Figure 3 describes an example reasoning path, showing
how a model may infer a drug-disease association through intermediary proteins and genes.

Query: associated
Drug for Protein regulates with Disease
regulated by w
Gene X?
targets
Drug Z

Figure 3. Example of a reasoning path in Graph-RAG

Stage 3: Graph-enhanced generation (refining the output). Once relevant paths or subgraphs have been
retrieved, the challenge becomes how to present them to the LLM. Path Selection (KELP) [45] addresses the
issue that providing an entire subgraph can overwhelm the model. Xu et al. proposed KELP for smartly
scoring and choosing only the most informative routes. It ensures the LLM focuses on the signal rather than
the noise, pruning the reasoning tree before generation.
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6.3. Hybrid RAG: the best of both worlds

The field is increasingly converging on Hybrid RAG [50]. These systems recognise a simple truth: graphs
excel at representing structure and logical dependencies, whereas text excels at conveying nuance and context.
Hybrid models therefore combine both modalities - using graphs to identify the essential backbone of an
answer and text to supply detailed, contextually grounded explanations. In effect, the graph provides the
"skeleton" of logic, while the text provides the "flesh" that completes the final response.

Table 2 provides a taxonomy of Graph-RAG methods, categorising them by their primary stage of

intervention.
Table 2. Taxonomy of Graph-RAG methods
Category Sub-category Description Representative Works
Indexing Text-to-Graph Builds KG from docs using LLMs Microsoft GraphRAG [42]
Graph Indexing Hierarchical clustering/indexing Edge et al. [42]
Retrieval Agentic Traversal LLM walks the graph step-by-step Think-On-Graph[43]
Atomic Decomposition  Breaks query into sub-graph queries Liet al. [44]
Generation Path Pruning Select most relevant paths KELP [45]
Hybrid Integration Combines text chunks + graph paths HybridRAG [46]

7. Advanced topics & future directions

If Graph-RAG represents the current state of the art, what lies ahead? The field is rapidly progressing beyond
systems that merely retrieve existing knowledge towards systems capable of explaining why things occur
(causality) and imagining what might take place (generation). This section examines these emerging frontiers.

7.1. Causal Graph-RAG: understanding "why"

Most contemporary Al models operate as correlation machines. They recognise that "taking aspirin" and
"headache relief" frequently co-occur, but they do not inherently understand the causal mechanism linking the
two. In scientific contexts, correlation is insufficient; causal reasoning is essential. Standard GNNs aggregate
information based on structural proximity rather than causal delineation. This limitation can lead to false
reasoning, where the model may state that a medicine is efficient merely due to its frequent association with a
sickness in writing, even if it has no therapeutic effect [47].

The solution is Causally-Aware GNNs. Researchers are now incorporating the mathematically strict Causal
Inference [48, 49] into graph neural networks. Approaches such as Causal-GNN [50] and the framework
proposed by Luo et al. in Causal Graphs Meet Thoughts [51] introduce a new type of "causally-aware GNN".
These models do more than propagate features: they learn to separate spurious associations from genuine
cause-effect relations. This enables Graph-RAG systems to respond to counterfactual questions ("What would
have happened to the patient if we hadn't given them that drug?"), which is necessary for making safe clinical
decisions.

7.2. Generative graph retrieval: simulating the unknown

Standard RAG has a fundamental limitation: it can only retrieve information that already exists in the
database. Scientific discovery, however, requires the ability to explore what is not yet known. How can we
identify a molecule that has never been observed?
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* The Innovation: Retrieval to Generation. The field is shifting from "retrieving a subgraph" to "generating
a subgraph", driven by advances in Generative Graph Models [52].

» Graph Diffusion Models: Inspired by the diffusion models underlying image generators such as Stable
Diffusion, researchers have modified these methods for use on graphs. Surveys by Zhang et al. [53] and
models such as DiGress [54] demonstrate how to train models to create valid, new molecular structures or
biological pathways by reversing a noise process.

» The Vision: Consider the query, "Design a protein that binds to Target X". Rather than looking up a
protein in a database that may not exist, a future Graph-RAG system would use a conditional diffusion model
[55] to create a completely new, hypothetical protein structure and how it interacts. Here, the "retrieved"
content is simulated, not recorded.

8. Conclusion

This review has mapped the evolution of trustworthy Al from the statistical fragility of LLMs to the structured
grounding of Graph-RAG. The argument is clear: while standard RAG offers a necessary "open book"
memory, it is an insufficiently "logical" reader of that book. Graph-RAG fills this structural gap. Retrieval is
elevated from text chunk matching to path-based reasoning, yielding three undeniable advantages for high-
stakes applications: precision, through the retrieval of discrete, unambiguous facts; reasoning, through the
integration of multi-hop dependencies; and verifiability, through explicit evidence trails that render the model's
reasoning transparent.

Graph-RAG, however, is far from a solved problem. Several challenges remain. The Latency Bottleneck
persists: graph traversal is expensive, especially when running iterative agentic models like Think-on-Graph.
Doing so in real time for web-scale graphs remains a challenge of scalability [56]. The "Garbage In" Risk is
equally pressing: a Graph-RAG system is only as reliable as the underlying graph. If we rely on hallucinating
LLM:s for KG construction, the system risks entering a self-reinforcing loop of misinformation. Ensuring data
quality in automated KG construction [57] may become a critical discipline. Finally, the Evaluation Gap
remains unresolved. How does one score the quality of a "reasoning path"? Traditional metrics such as BLEU
or recall do not capture logical validity. No standardised benchmarks currently distinguish between a correct
answer derived through flawed reasoning and one derived through sound reasoning [58].

Looking ahead, the future of Al is symbiosis: the seamless, creative power of connectionist models (e.g.,
Large Language Models, LLMs), colliding headlong with the rigid, logical scaffolding of symbolic systems
(e.g., Knowledge Graphs, KGs). The most promising frontier is not static retrieval but causal generation. As
causal inference and graph diffusion models are incorporated into the RAG pipeline, we move closer to Al
systems that do not merely regurgitate information but develop a structured understanding of how the world
works.

References

[1] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry,
G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M.,
Wu, J., Winter, C., ... Amodei, D. (2020). Language models are few-shot learners. Advances in Neural
Information Processing Systems, 33, 1877-1901.

[2] Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Canton Ferrer, C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J.,



32 | Advances in Engineering Innovation | Vol.17 | Issue 2

Fu, W,, ... Scialom, T. (2023). Llama 2: Open foundation and fine-tuned chat models. arXiv. https:
//arxiv.org/abs/2307.09288

[3] Anthropic. (2024). The Claude 3 model family: Opus, Sonnet, Haiku [Technical report]. https:
//'www.anthropic.com/research/claude-3-family

[4] Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D.,
Metzler, D., Chi, E. H., Hashimoto, T., Vinyals, O., Liang, P., Dean, J., & Fedus, W. (2022). Emergent abilities
of large language models. Transactions on Machine Learning Research. https://arxiv.org/abs/2206.07682

[5] OpenAl. (2024). GPT-4o system card. OpenAl. https: //openai.com/index/gpt-40-system-card/

[6] Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary, B., Bressand, F., Lengyel, G., Bour, G., Lavaud,
L. R., Gervet, T., Bamford, C., Chaplot, D. S., de las Casas, D., Ebner, M., Bhotika, F., Hanna, E. B., Biken, F.,
... Lample, G. (2024). Mixtral of experts. arXiv. https: //arxiv.org/abs/2401.04088

[7] 1, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, Y. J., Madotto, A., & Fung, P. (2023). Survey
of hallucination in natural language generation. ACM Computing Surveys, 55(12), Article 248. https:
//doi.org/10.1145/3571730

[8] Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., & Liu, T.
(2023). 4 survey on hallucination in large language models: Principles, taxonomy, challenges, and open
questions. arXiv. https: //arxiv.org/abs/2311.05232

[9] Huang,J., & Chang, K. C.-C. (2022). Towards reasoning in large language models: A survey. arXiv. https:
//arxiv.org/abs/2212.10403

[10] Tonmoy, S. M. T. 1., Zaman, S. M. M., Jain, V., Rani, A., Rawte, V., Chadha, A., & Das, A. (2024). A
comprehensive survey of hallucination mitigation techniques in large language models. arXiv. https:
//arxiv.org/abs/2401.01313

[11] Kasneci, E., SeBler, K., Kiichemann, S., Bannert, M., Dementieva, D., Fischer, F., Gasser, U., Groh, G.,
Glinnemann, S., Hiillermeier, E., Krusche, S., Kutyniok, G., Michaeli, T., Nerdel, C., Pfeffer, J., Poquet, O.,
Sailer, M., Schmidt, A., Seidl, T., ... Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges
of large language models for education. Learning and Individual Differences, 103, 102274. https:
//doi.org/10.1016/j.1indif.2023.102274

[12] Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang, J., Dong, Z., Du, Y.,
Yang, C., Chen, Y., Chen, Z., Jiang, J., Ren, R., Li, Y., Tang, X., Liu, Z., ... Wen, J.-R. (2023). 4 survey of
large language models. arXiv. https: //arxiv.org/abs/2303.18223

[13] Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Kiittler, H., Lewis, M., Yih, W.-t.,
Rocktéschel, T., Riedel, S., & Kiela, D. (2020). Retrieval-augmented generation for knowledge-intensive NLP
tasks. Advances in Neural Information Processing Systems, 33, 9459-9474.

[14] Zhao, P., Zhang, H., Yu, Q., Wang, Z., Geng, Y., Fu, F., Yang, L., Zhang, W., Jiang, J., & Cui, B. (2024).
Retrieval-augmented generation for Al-generated content: A survey. arXiv. https: //arxiv.org/abs/2402.19473

[15] Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L., Edunov, S., Chen, D., & Yih, W.-T. (2020). Dense passage
retrieval for open-domain question answering. Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP) (pp. 6769—6781). Association for Computational Linguistics.

[16] Borgeaud, S., Mensch, A., Hoffmann, J., Cai, T., Rutherford, E., Millican, K., van den Driessche, G. B.,
Lespiau, J.-B., Damoc, B., Clark, A., de Las Casas, D., Guy, A., Menick, J., Ring, R., Hennigan, T., Huang, S.,
Maggiore, L., Jones, C., Cassirer, A., ... Sifre, L. (2022). Improving language models by retrieving from
trillions of tokens. Proceedings of the 39th International Conference on Machine Learning (pp. 2206—2240).
PMLR.

[17] Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y., Sun, J., Wang, M., & Wang, H. (2023). Retrieval-
augmented generation for large language models: A survey. arXiv. https: //arxiv.org/abs/2312.10997

[18] Wang, X., Wang, Z., Gao, X., Zhang, F., Wu, Y., Xu, Z., Shi, T., Wang, Z., Li, S., Qian, Q., Yin, R., Lv, C.,
Zheng, X., & Huang, X. (2024). Searching for best practices in retrieval-augmented generation. arXiv. https:



Advances in Engineering Innovation | Vol.17 | Issue 2 | 33

//arxiv.org/abs/2407.01219

[19] Ovadia, O., Brief, M., Mishaeli, M., & Elisha, O. (2023). Fine-tuning or retrieval? Comparing knowledge
injection in LLMs. arXiv. https: //arxiv.org/abs/2312.05934

[20] Liu, N. F.,, Lin, K., Hewitt, J., Paranjape, A., Bevilacqua, M., Petroni, F., & Liang, P. (2024). Lost in the
middle: How language models use long contexts. Transactions of the Association for Computational
Linguistics, 12, 157-173.

[21] Hogan, A., Blomgqvist, E., Cochez, M., d’Amato, C., de Melo, G., Gutierrez, C., Kirrane, S., Gayo, J. E. L.,
Navigli, R., Neumaier, S., Ngomo, A.-C. N., Polleres, A., Rashid, S. M., Rula, A., Schmelzeisen, L., Sequeda,
J., Staab, S., & Zimmermann, A. (2021). Knowledge graphs. ACM Computing Surveys, 54(4), 1-37.

[22] Ji, S., Pan, S., Cambria, E., Marttinen, P., & Philip, S. Y. (2021). A survey on knowledge graphs:
Representation, acquisition, and applications. IEEE Transactions on Neural Networks and Learning Systems,
33(2), 494-514.

[23] Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K.,
Dwight, S. S., Eppig, J. T., Harris, M. A, Hill, D. P, Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C.,
Richardson, J. E., Ringwald, M., Rubin, G. M., & Sherlock, G. (2000). Gene ontology: Tool for the unification
of biology. Nature Genetics, 25(1), 25-29.

[24] Bollacker, K., Evans, C., Paritosh, P., Sturge, T., & Taylor, J. (2008). Freebase: A collaboratively created graph
database to structure human knowledge. Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, 1247-1250.

[25] Vrandecié, D., & Krétzsch, M. (2014). Wikidata: A free collaborative knowledgebase. Communications of the
ACM, 57(10), 78-85.

[26] Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P. N., Hellmann, S., Morsey, M., van
Kleef, P., Auer, S., & Bizer, C. (2015). DBpedia — A large-scale, multilingual knowledge graph extracted from
Wikipedia. Semantic Web, 6(2), 167-195.

[27] Banko, M., Cafarella, M. J., Soderland, S., Broadhead, M., & Etzioni, O. (2007). Open information extraction
from the web. Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI-07),
2670-2676.

[28] Bian, H. (2024). LLM-empowered knowledge graph construction: A survey. arXiv. https:
//arxiv.org/abs/2510.20345

[29] Trajanoska, M., Stojanov, R., & Trajanov, D. (2023). Enhancing knowledge graph construction using large
language models. arXiv. https: //arxiv.org/abs/2305.04676

[30] Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., & Yakhnenko, O. (2013). Translating embeddings for
modeling multi-relational data. Advances in Neural Information Processing Systems, 26, 2787-2795.

[31] Trouillon, T., Welbl, J., Riedel, S., Gaussier, E., & Bouchard, G. (2016). Complex embeddings for simple link
prediction. Proceedings of the 33rd International Conference on Machine Learning (ICML), 2071-2080.

[32] Sun, Z., Deng, Z.-H., Nie, J.-Y., & Tang, J. (2019). RotatE: Knowledge graph embedding by relational rotation
in complex space. 7th International Conference on Learning Representations (ICLR 2019). https:
//arxiv.org/abs/1902.10197

[33] Kipf, T. N., & Welling, M. (2017). Semi-supervised classification with graph convolutional networks. 5t/
International Conference on Learning Representations (ICLR 2017). https: //arxiv.org/abs/1609.02907

[34] Velickovi¢, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2018). Graph attention networks.
o6th International Conference on Learning Representations (ICLR 2018). https: //arxiv.org/abs/1710.10903

[35] Schlichtkrull, M., Kipf, T. N., Bloem, P., van den Berg, R., Titov, L., & Welling, M. (2018). Modeling relational
data with graph convolutional networks. The Semantic Web (ESWC 2018), 10843, 593-607.

[36] Lin, S., Hilton, J., & Evans, O. (2022). Truthful QA: Measuring how models mimic human falsehoods.
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), 3214-3252.



34 | Advances in Engineering Innovation | Vol.17 | Issue 2

[37] Li, J., Cheng, X., Zhao, W. X., Nie, J.-Y., & Wen, J.-R. (2023). HaluEval: A large-scale hallucination
evaluation benchmark for large language models. Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, 6449—-6464.

[38] Ma, Y., Cao, Y., Hong, Y., & Sun, A. (2023). Large language model is not a good few-shot information
extractor, but a good reranker for hard samples! arXiv. https: //arxiv.org/abs/2303.08559

[39] Peng, B., Zhu, Y., Liu, Y., Bo, X., Shi, H., Hong, C., Zhang, Y., & Tang, S. (2024). Graph retrieval-augmented
generation: A survey. arXiv. https: //arxiv.org/abs/2408.08921

[40] Zhang, Q., Chen, S., Bei, Y., Yuan, Z., Zhou, H., Hong, Z., Dong, J., Chen, H., Chang, Y., & Huang, X. (2025).
A survey of graph retrieval-augmented generation for customized large language models. arXiv. https:
//arxiv.org/abs/2501.13958

[41] Pan, S., Luo, L., Wang, Y., Chen, C., Wang, J., & Wu, X. (2024). Unifying large language models and
knowledge graphs: A comprehensive survey. IEEE Transactions on Knowledge and Data Engineering.
Advance online publication. https: //doi.org/10.1109/TKDE.2024.3402368

[42] Edge, D., Trinh, H., Cheng, N., Bradley, J., Chao, A., Mody, A., Truitt, S., & Larson, J. (2024). From local to
global: A graph RAG approach to query-focused summarization. arXiv. https: //arxiv.org/abs/2404.16130

[43] Sun, J., Xu, C., Tang, L., Wang, S., Lin, C., Gong, Y., Ni, L. M., Shum, H.-Y., & Guo, J. (2024). Think-on-
Graph: Deep and responsible reasoning of large language model on knowledge graph. The Twelfth
International Conference on Learning Representations (ICLR 2024). https: //openreview.net/forum?
id=108q7c7F9x

[44] Li, Y., Song, D., Zhou, C., Tian, Y., Wang, H., Yang, Z., & Zhang, S. (2024). A framework of knowledge graph-
enhanced large language model based on question decomposition and atomic retrieval. In Findings of the
Association for Computational Linguistics: EMNLP 2024 (pp. 11472—11485). Association for Computational
Linguistics.

[45] Liu, H., Wang, S., Zhu, Y., Dong, Y., & Li, J. (2024). Knowledge graph-enhanced large language models via
path selection. In Findings of the Association for Computational Linguistics: ACL 2024 (pp. 6311-6321).
Association for Computational Linguistics.

[46] Sarmah, B., Benara, V., Awasthi, A., & Talukdar, P. (2024). HybridRAG: Integrating knowledge graphs and
vector retrieval for retrieval-augmented generation. arXiv. https: //arxiv.org/abs/2408.04948

[47] Kiciman, E., Ness, R., Sharma, A., & Tan, C. (2023). Causal reasoning and large language models: Opening a
new frontier for causality. arXiv. https: //arxiv.org/abs/2305.00050

[48] Pearl, J. (2009). Causality: Models, reasoning, and inference (2nd ed.). Cambridge University Press.

[49] Pearl, J., & Mackenzie, D. (2018). The book of why: The new science of cause and effect. Basic Books.

[50] Mesinovic, M., Buhlan, M., & Zhu, T. (2025). Causal graph neural networks for healthcare. arXiv. https:
//arxiv.org/abs/2511.02531

[51] Luo, H., Zhang, J., & Li, C. (2025). Causal graphs meet thoughts: Enhancing complex reasoning in graph-
augmented LLMs. arXiv. https: //arxiv.org/abs/2501.14892

[52] Guo, X., & Zhao, L. (2018). A systematic survey of deep generative models for graph generation. /EEE
Transactions on Knowledge and Data Engineering, 30(5), 1036—1053.

[53] Zhang, M., Qamar, M., Kang, T., Jung, Y., Zhang, C., Bae, S., & Zhang, C. (2023). 4 survey on graph diffusion
models: Generative Al in science for molecule, protein and material. arXiv. https: //arxiv.org/abs/2304.01565

[54] Vignac, C., Krawczuk, 1., Siraudin, A., Wang, B., Cevher, V., & Frossard, P. (2023). DiGress: Discrete
denoising diffusion for graph generation. The Eleventh International Conference on Learning Representations
(ICLR 2023). https: //openreview.net/forum?id=UaAD-Nu86WX

[55] Jo, J., Lee, S., & Hwang, S. J. (2022). Score-based generative modeling of graphs via the system of stochastic
differential equations. Proceedings of the International Conference on Machine Learning, 10362—10383.

[56] Liang, K., Meng, L., Liu, M., Liu, Y., Tu, W., Wang, S., Zhou, S., Liu, X., & Sun, F. (2024). A survey of
knowledge graph reasoning on graph types: Static, dynamic, and multi-modal. /[EEE Transactions on Pattern



Advances in Engineering Innovation | Vol.17 | Issue 2 | 35

Analysis and Machine Intelligence, 46(12), 9456-9478.

[57] Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., & Auer, S. (2016). Quality assessment for linked
data: A survey. Semantic Web, 7(1), 63-93.

[58] Chen, J., Lin, H., Han, X., & Sun, L. (2024). Benchmarking large language models in retrieval-augmented
generation. Proceedings of the AAAI Conference on Artificial Intelligence, 38(16), 17754—-17762.



