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Abstract.  This paper systematically reviews the latest advances in deep learning-based path planning for
autonomous mobile robots, addressing the limitations of traditional methods (e.g., A*, Rapidly-exploring
Random Tree (RRT)) in dynamic, high-dimensional, and unstructured environments. We comprehensively
analyze five major deep learning model categories: Convolutional Neural Networks (CNNs) for spatial feature
extraction, Graph Neural Networks (GNNs) for multi-agent collaboration, Recurrent Neural Networks (RNNs)
for temporal modeling, Transformers for long-range dependency and complex instruction understanding, and
generative models (e.g., GANs, Diffusion Models) for creative path generation. Our analysis covers technical
principles, advantages, limitations, application scenarios, and development trends of these methods. The
review reveals that deep learning has fundamentally transformed path planning from perception enhancement
to decision substitution, from isolated agents to multi-agent collaboration, and from search-based to generative
paradigms. Key findings indicate significant performance improvements: GNN-based distributed planning
triples multi-robot collaboration efficiency, and generative models increase complex instruction planning
success rates to 78.1%. Future directions include cross-modal integration, lightweight deployment, simulation-
to-reality transfer, and verifiable safety assurance, which will be crucial for advancing next-generation
intelligent mobile robot navigation systems.
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1. Introduction
With the widespread application of autonomous mobile robots in manufacturing, logistics, agriculture, and
domestic services, path planning technology—as a core decision-making component—faces unprecedented
challenges. Traditional planning algorithms such as A* and RRT perform well in structured static
environments but often suffer from low computational efficiency, poor environmental adaptability, and
difficulties in handling multimodal instructions in dynamic, high-dimensional, and unstructured complex
environments. Recent breakthroughs in deep learning, particularly the powerful capabilities of Convolutional
Neural Networks (CNNs), Graph Neural Networks (GNNs), Recurrent Neural Networks (RNNs),
Transformers, and generative models in perception and sequence modeling, have opened new paradigms for
path planning research.
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This paper systematically reviews the latest research progress and application prospects of deep learning-
based path planning methods. By examining the technical principles, advantages, limitations, application
scenarios, and development trends of these methods, this paper not only provides a clear technological
panorama for researchers but also identifies key future directions such as cross-modal integration, lightweight
deployment, and safety verification, offering theoretical references and practical guidance for advancing the
next generation of intelligent mobile robot navigation systems.

2. Literature review
Deep learning-driven path planning research has evolved from an initial perception-aiding role to becoming
the core of intelligent systems capable of handling the entire perception-decision-control pipeline.

2.1. CNN-based path planning methods
The application of CNNs in path planning originated from their strong spatial feature extraction capabilities.
Early research primarily used them as environmental perception tools to generate richer feature representations
(e.g., cost maps, semantic segmentation maps) from raw sensor data (e.g., Light Detection and Ranging
(LiDAR) point clouds, images), enhancing the performance of traditional search algorithms (A*, Dijkstra).
This represents the environmental feature enhancement paradigm. Subsequently, researchers explored end-to-
end learning paradigms, using CNN or CNN-Long Short-Term Memory (LSTM) hybrid architectures to
directly map sensor inputs to control commands. While this simplifies system architecture, it demands
substantial data and computational resources and faces interpretability challenges. To balance performance and
reliability, hybrid architectures (e.g., Three-Dimensional Convolutional Neural Network (3DCNN)+LSTM)
have been proposed, focusing on spatiotemporal feature joint extraction and multimodal information fusion,
emerging as a mainstream direction.

2.2. GNN-based path planning methods
The rise of GNNs addresses the limitation of traditional deep learning models in processing relational data. In
Multi-Robot Path Planning (MRPP), GNNs naturally model robot teams as graph structures, enabling efficient
and scalable distributed collaborative planning through message-passing mechanisms, effectively resolving
implicit coordination issues under communication constraints. Meanwhile, researchers have designed
dedicated hardware processors (e.g., Graph Processing Unit (GPPU)) to accelerate GNN inference in planning
and explored their potential in human-robot interaction, significantly lowering the barrier for robot behavior
customization by interpreting user navigation intentions through intuitive methods like hand-drawn sketches.

2.3. RNN-based path planning methods
The RNN family (especially LSTM and Gated Recurrent Units (GRU)) possesses unique advantages in
modeling temporal dependencies due to their inherent memory capabilities. Their applications range from
learning policies of classical planners in static environments to accelerate search, to temporal collaborative
decision-making in multi-robot systems, and further to predicting future trajectories of other agents (e.g.,
pedestrians) in dynamic interactive environments for safe and socially compliant planning. The combination of
RNNs with Monte Carlo Tree Search (MCTS) provides an effective solution to the "freezing robot" problem in
dense dynamic scenarios.
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2.4. Transformer-based path planning methods
Transformer's self-attention mechanism endows it with powerful long-range dependency modeling and
parallel processing capabilities. Its applications in path planning are extensive. In robotic arm planning, it
predicts dynamic obstacle trajectories to optimize search. In multi-robot planning, it captures long-range
spatiotemporal dependencies among agents via attention weights, enabling communication-free coordination.
In global navigation, Vision Transformer (ViT) processes arbitrarily sized grid maps to extract global
structural features guiding search. In heuristic learning, it replaces traditional heuristic functions to learn
complex mappings from maps to optimal path probabilities.

2.5. Generative model-based path planning methods
Generative models (e.g., Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs),
Diffusion Models) lead the new paradigm of generative planning. Their core idea shifts from "searching" for a
path to "generating" one that best satisfies constraints and instructions. These methods excel in hierarchical
semantic map construction that interprets intricate spoken commands, in dynamic obstacle avoidance
strengthened by adversarial samples that harden robustness, and in iterative generative optimization that
steadily polishes trajectories.

In summary, deep learning has deeply integrated into all aspects of path planning, evolving from perception
enhancement to decision substitution, from isolated agents to multi-agent collaboration, from static to dynamic
interactive environments, and from search to generative paradigms [1]. Future research will focus more on
multimodal fusion (vision-language-control), lightweight and accelerated deployment (for embedded
platforms), simulation-to-reality transfer, and verifiable safety assurance, ultimately promoting reliable and
efficient autonomous operation of intelligent mobile robots in complex real-world environments.

3. CNN-based path planning methods

3.1. Method classification and technical framework
Convolutional Neural Networks, leveraging their powerful spatial feature extraction capabilities, provide a
feasible framework for end-to-end learning from raw perceptual data to motion control. Current research on
CNN-based path planning primarily follows three technical routes. The first is end-to-end learning, where the
network directly maps raw perceptual input to control commands. The second treats the CNN as an
environmental feature enhancer that enriches the input scene before it is handed to classical planners. The third
route builds hybrid architectures that tightly integrate the CNN with other deep learning models to exploit
complementary strengths. These methods collectively advance the intelligence of robot perception and
decision-making in complex environments.

3.2. End-to-end learning methods
These methods aim to establish a direct mapping from sensor inputs to control commands using CNNs and
their variants (e.g., CNN-LSTM), avoiding error accumulation from multiple independent modules in
traditional planning (e.g., environment modeling, path search).

Represented by CNN-LSTM hybrid architectures. CNN backbone networks (e.g., Visual Geometry Group
(VGG), ResNet) extract high-level spatial features (obstacle distribution, traversable areas) from LiDAR point
clouds or camera images, followed by LSTM networks modeling temporal dependencies to capture dynamic
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obstacle movements, ultimately outputting control commands. The workflow decomposes into three core
stages: feature extraction, temporal modeling, and control decision-making.

This approach simplifies system architecture through end-to-end learning and demonstrates strong
adaptability to dynamic environments. However, its performance heavily relies on large amounts of high-
quality training data, and the model's poor interpretability ("black box" issue) may pose safety risks in extreme
scenarios outside the training distribution.

3.3. Environmental feature enhancement methods
These methods treat CNNs as powerful environmental information processors to enhance the perception
capabilities of traditional planning algorithms (e.g., A*, Dijkstra) rather than replacing them.

CNNs act as pre-processors for traditional planners, primarily serving three roles. They identify dynamic
obstacles by processing fresh sensor data every frame and immediately bake the temporal cues into evolving
cost maps. They supply planners with rich semantic understanding by leveraging their own detection and
segmentation pipelines such as Mask R-CNN to label every object in view. They also fuse vision, LiDAR, and
any other available modality into a single, sharper representation of the surroundings. In dynamic dense
environments (e.g., logistics warehouses), this method enhances the environmental perception of algorithms
like A* and Dijkstra, improving obstacle avoidance response speed by approximately 30% while maintaining
planning reliability.

3.4. Hybrid architecture methods
This approach forms more powerful planning systems by organically combining CNNs with other deep
learning models. The fusion of 3DCNN and LSTM is a typical example [2].

3.4.1. Spatiotemporal feature extraction with 3DCNN
3D CNN introduces temporal convolutions that let a single network harvest both spatial layout and motion
cues straight from raw video. This spatiotemporal joint modeling reveals how dynamic obstacles actually
move, while its multi-scale feature layers adapt to scene variations from fine grain to global context, all trained
end-to-end so that engineers no longer hand-craft pipelines of bespoke features.

3.4.2. Multimodal fusion mechanism
In hybrid architectures, CNNs undertake the critical task of multimodal data fusion. They first align data from
disparate sensors into a common spatial-temporal canvas, then blend complementary cues at the abstract
feature level, and finally merge every modality into a single decision space that drives the ultimate plan.
Experiments show that fusion mechanisms can increase planning success rates from 72% to 89%.

In conclusion, the application of CNNs in path planning has evolved from simple environmental perception
to complex decision-making and planning, showing a trend from single models to hybrid architectures and
from isolated learning to integrated innovation. End-to-end learning methods demonstrate advantages in
simplifying system architecture, while feature enhancement methods hold greater value in maintaining
planning reliability. Future research will focus on improving model efficiency, enhancing generalization, and
ensuring safety. With the continuous emergence of new architectures and algorithms, CNN-based path
planning methods will play an increasingly important role in the field of mobile robotics.
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4. GNN-based path planning methods

4.1. Method classification and technical framework
Traditional path planning methods often treat human users as passive specifiers of goal points rather than co-
definers of navigation behavior. However, in practical applications such as warehousing and services, users
often have specific preferences for robot movement styles, safety margins, and situational responses (e.g.,
preferring wide turning radii, paths avoiding specific areas). These high-level semantic intentions are difficult
to describe precisely using traditional cost functions or rules. Thus, an emerging research direction explores
using Graph Neural Networks (GNNs) and their variants within an Imitation Learning framework to
understand and execute human navigation intentions expressed intuitively, significantly lowering the technical
barrier for robot behavior customization. This direction elevates human-robot interaction to a core component
of path planning systems, not merely a peripheral interface. GNNs, by processing non-Euclidean spatial
relational data, provide new ideas for multi-robot collaboration and hardware-accelerated planning. Current
mainstream methods include distributed collaborative planning, dedicated processor optimization, and human-
interactive planning.

4.2. Distributed collaborative planning
Jo et al. proposed a GNN framework that models robot teams as dynamic graphs, aggregating local
observation information (robot state, sub-goals, obstacles) through graph convolution. This framework uses
conflict-based search algorithms to generate expert data for training GNN policies, achieving decentralized
path planning in agricultural environments supporting 100+ robot collaboration, with planning efficiency three
times higher than traditional methods [3]. For instance, GNN distributed planning triples multi-robot
collaboration efficiency, and generative models increase complex instruction planning success rates to 78.1%
[4]. As illustrated in Figure 1, the GNN-based framework processes local observations via graph convolution
to optimize multi-robot coordination without centralized control.

Figure 1. GNN-based decentralized path planning framework for agricultural robot teams [3]

4.3. Hardware acceleration optimization
Song et al. designed a GPPU processor employing Structured Dynamic Resolution Sampling (SDRS) and K-
Nearest Neighbor grouping techniques, optimizing memory access through a reordered grid prefetcher.
Implemented in 28nm technology, it achieves a latency of 1.79ms and reduces path length by 32%. Figure 2
demonstrates the GPPU hardware accelerator architecture, highlighting its hybrid matrix aggregation design
that efficiently handles irregular access patterns in sparse graph computations. Its hybrid matrix aggregation
architecture effectively addresses irregular access issues in sparse graph computations.
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Figure 2. GPPU hardware accelerator for GNN-based path planning [3]

4.4. Human-interactive planning
Rizk et al.'s SKIPP framework converts hand-drawn sketches into executable paths, generating trajectories that
align with user preferences via a U-Net structure. In L-shaped path generation tasks, the Average Position
Error (APE) is only 0.051m, with a Fréchet Inception Distance (FID) score of 47. Figure 3 showcases the
SKIPP framework's input-output process, where hand-drawn sketches are translated into precise navigation
paths that match user intent. It has been integrated into the NVIDIA Intelligent Simulation and Autonomous
Control (ISAAC) platform for end-to-end navigation.

Figure 3. SKIPP framework for human-interactive path planning via hand-drawn sketches [3]

5. RNN-based path planning methods
Recurrent Neural Networks, with their internal memory units, effectively process sequential data and capture
temporal dependencies, demonstrating significant potential in robot path planning. Recently, researchers have
successfully applied RNNs and their variants to various planning tasks, from static environments to highly
dynamic interactive scenarios, significantly improving planning efficiency, robustness, and intelligence.

Ramya S Nair et al. used LSTM to learn the mapping relationship of paths generated by the Dijkstra
algorithm, achieving fast planning in grid environments with performance close to A*. However, the model
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strongly depends on the training environment, with performance degradation up to 25% in unfamiliar scenes
[5].

Yuseung Jo's GNN framework models robot neighbor relationships via dynamic graphs, predicting
movement probabilities based on local information. Verified in agricultural robot teams, this scheme maintains
a task completion rate over 90% even in communication-constrained environments.

Stuart Eiffert's generative RNN combined with Monte Carlo Tree Search (MCTS) predicts pedestrian
trajectories through an encoder-decoder architecture. Figure 4 visualizes the generative RNN with MCTS
framework, showing how the model generates and refines trajectories in dynamic pedestrian environments.
This framework successfully mitigates the "freezing robot" problem, achieving zero collision rates in dense
crowd simulations, and allows adjustment of planning objectives by modifying the cost function [6].

Figure 4. Generative RNN with MCTS for dynamic pedestrian trajectory prediction [6]

Figure 5 compares the "freezing robot" problem mitigation between traditional RRT* and the generative
RNN approach. The figure demonstrates that the generative RNN framework maintains continuous motion in
dense crowds (0% frozen robots), while RRT exhibits significant motion freezes (37% of time), leading to a
92% improvement in navigation success rate.

Figure 5. Comparison of "freezing robot" problem mitigation using generative RNN [6]
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From learning static priors to multi-agent collaboration and dynamic interaction prediction, RNN-based
methods show continuous evolutionary capability. Future work needs to develop hybrid models like
ConvLSTM to enhance generalization and validate long-term planning stability in real-world scenarios.

6. Innovative applications of transformer in path planning
In recent years, Transformer models have achieved remarkable success in natural language processing and
computer vision due to their powerful sequence modeling and long-range dependency capture capabilities.
This success has inspired the robotics community to introduce them into path planning to address limitations
of traditional methods in dynamic environments, high-dimensional state spaces, and multi-agent collaboration.
Existing research primarily unfolds in the following directions, promoting the intelligent development of path
planning technology.

6.1. Single/dual robotic arm path planning in dynamic environments
Addressing path planning for robotic arms in manufacturing and assembly scenarios, Wang et al. proposed the
T-ABA* algorithm, combining Transformer with Adaptive Bidirectional A* search. The core lies in using
Transformer's dynamic obstacle prediction capability to optimize the search's heuristic function [7]. As shown
in Figure 6, the system perceives the environment via LiDAR, predicts obstacle motion with Transformer, and
generates smooth, safe joint space trajectories. This method performs excellently in both single-arm and dual-
arm collaborative tasks, significantly reducing computation time and joint rotation angles.

Particularly in dual-arm robot coordination planning, T-ABA* dynamically adjusts paths by predicting
potential collisions between arms using the Transformer model, avoiding limitations of traditional methods
(e.g., trigger flags or geometric constraints) in dynamic environments, enabling safe and efficient collaborative
operation.

Figure 6. T-ABA* algorithm for robotic arm path planning using Transformer [7]

6.2. Multi-robot path planning under communication constraints
In the Multi-Robot Path Planning (MRPP) domain, Chen et al. focused on achieving implicit coordination
without inter-robot communication. They proposed the TIRL framework, integrating Transformer structure
into the policy network to extract features conducive to collaboration from local observations [8]. As shown in
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Figure 7, Transformer processes agent-centric local observations (e.g., other robot positions, obstacles),
capturing long-range spatiotemporal dependencies among agents via self-attention. Experiments show that this
method achieves higher success rates than many communication-dependent advanced methods in dense static
obstacle environments, significantly enhancing the robustness of multi-robot systems.

Figure 7. TIRL framework for communication-free multi-robot path planning [8]

6.3. Vision-based global path planning for legged robots
For legged robot platforms, Liu et al. proposed the ViT-A* method, combining Vision Transformer (ViT) with
differentiable A* search. As shown in Figure 8, this method segments 2D maps (e.g., RGB images or
occupancy grids) into patches, generating a guidance cost map for path search via the ViT encoder. ViT's core
advantage is its ability to process input maps of arbitrary sizes and effectively capture global structural
information (e.g., obstacle layout, narrow passages), guiding the A* searcher to reduce invalid exploration
regions (Figure 4). Experiments validated the method's effectiveness on real quadruped robots like Spot and
Go1 .

Figure 8. ViT-A* method for legged robot path planning using Vision Transformer [7]

6.4. Heuristic function learning on grid maps
At the more fundamental grid map path planning level, Zhang et al. focused on using Transformer to learn
more accurate heuristic functions. They proposed the NIFPPM method, first enhancing the Optimal Path
Probability (OPP) map using a neighborhood information fusion filter, then leveraging a Transformer network
to learn the mapping from environmental maps to the OPP map. Figure 9 shows the NIFPPM method's
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architecture, highlighting how the Transformer network processes the enhanced OPP map to generate a path
probability map that reduces invalid search nodes by 77%.

Figure 9. NIFPPM method for heuristic function learning using Transformer [7]

Transformer's advantage in long-sequence modeling makes it particularly suitable for long-horizon
planning tasks. Future work should explore lightweight attention mechanisms, integration with model
predictive control, and extension to 3D space applications.

7. Frontiers in generative large model path planning
Generative models are advancing autonomous navigation technology through multimodal fusion and dynamic
environment adaptability in path planning.

7.1. Hierarchical semantic maps
Probabilistic reasoning-based hierarchical semantic map construction methods (e.g., SpCoTMHP) integrate
voice instructions, topological relationships, and metric maps, enabling robots to understand complex
instructions like "go to the bedroom via the hallway" that include waypoints [9]. Figure 10 presents the
hierarchical semantic map construction process, where topological layer planning guides specific motion
trajectories at the metric layer, resulting in an enhanced success rate for complex instruction planning. By
learning environment-specific vocabulary and location associations through spatial concepts, this method
increases path planning success rates to 78.1% in home environments and reduces computation time by 7.14
seconds. The core lies in generating hierarchical paths through the Control as Probabilistic Inference (CaI)
framework, where topological layer planning guides specific motion trajectories at the metric layer.



86	|	Advances	in	Engineering	Innovation	|	Vol.17	|	Issue	2

Figure 10. Hierarchical semantic map construction for complex instruction understanding [9]

7.2. Generative adversarial network applications
In dynamic obstacle handling, hybrid architectures combining Generative Adversarial Networks (GANs) with
traditional path planning algorithms show significant advantages [10]. For example, addressing UAV planning
in environments with four motion pattern obstacles (static, linear, circular, serpentine), a GAN generator
produces waypoint sequences, verified for safety and connectivity by a discriminator. This method shortens
path length by 20.4% compared to traditional RRT algorithms and completely avoids collisions. Notably, the
generator refines paths iteratively through a cyclic optimization mechanism; as shown in Figure 11, its output
continuously approaches the optimal path over 50 iterations.

Figure 11. GAN-based path generation for dynamic obstacle avoidance [10]
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7.3. Recurrent Generative Models
Recurrent Generative Models (RGM) further extend the generalization capability of generative models. By
embedding Gated Recurrent Units (GRU) into an encoder-decoder structure, the model utilizes historical
generation information for iterative optimization. In tests involving unseen map types, the model maintains
over 89.43% accuracy, reducing the number of iterations for RRT* to find initial paths by about 40%. This
learning-from-historical-data characteristic allows generative models to capture spatial semantic features of
environments, as shown in the path distribution patterns across different map types in Figure 6.

Key bottlenecks include reliance on training data, computational latency, and safety verification.
Integration with large language models, application of transfer learning, and combination with reinforcement
learning will be critical breakthroughs. These directions will propel generative path planning from laboratory
settings to real-world complex environments, ultimately achieving autonomous navigation systems with
human-like cognitive levels.

8. Conclusion
This paper systematically reviews deep learning-based path planning methods, delving into the theoretical
foundations, implementation mechanisms, performance comparisons, and development trends of five technical
routes: CNN, GNN, RNN, Transformer, and generative models. Research indicates that deep learning has
fundamentally transformed the design paradigm of path planning, shifting from traditional methods relying on
handcrafted rules and cost functions to data-driven, end-to-end learning capable intelligent systems with
strong environmental adaptability. The main conclusions are as follows:

Methodologically, various models complement each other. CNNs are the cornerstone for processing spatial
data; GNNs are adept at modeling multi-agent relationships; RNNs excel at capturing temporal dynamics;
Transformers, with their global attention mechanism, handle long-range dependencies and complex
instructions well; generative models pioneer a new "generate rather than search" paradigm with stronger
generalization.

Performance-wise, deep learning models show significant improvements over traditional methods in
dynamic environment adaptability, multimodal instruction understanding, multi-agent collaboration efficiency,
and human-robot interaction naturalness.

Challenges remain, including reliance on high-quality training data, model interpretability and "black box"
decision-making safety concerns, the inherent conflict between computational complexity and mobile platform
constraints, and insufficient generalization in novel or extreme scenarios.

Based on the current research landscape and challenges, key future directions include:
Cross-modal fusion and large model application: Exploring deep fusion of multimodal information (vision-

language-point clouds) and incorporating the powerful reasoning capabilities of Large Language Models
(LLMs) and Vision-Language Models (VLMs) to enable robots to understand more abstract, high-level task
instructions for genuine task-level planning.

Lightweight and edge computing: Promoting efficient deployment of complex models on resource-
constrained embedded platforms via neural network pruning, quantization, knowledge distillation, and
dedicated hardware accelerators to meet real-time requirements.

Self-supervised and meta-learning: Reducing dependence on large manually annotated datasets by using
self-supervised learning for pre-training from unlabeled data, and employing meta-learning mechanisms to
equip models with "lifelong learning" ability for rapid adaptation to unknown environments.
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Verifiable safety and robustness: Combining formal verification methods with deep learning to provide
safety guarantees and performance lower bounds for data-driven planning systems, ensuring reliable
application in safety-critical scenarios.

Bridging the simulation-reality gap: Developing higher-quality simulation environments and high-fidelity
domain adaptation techniques to create a "simulation-reality" closed loop, providing massive data for model
training and testing cost-effectively and efficiently.

In conclusion, path planning technology empowered by deep learning is rapidly advancing towards greater
intelligence, generality, and safety. As technologies mature and breakthroughs occur, intelligent robots with
highly autonomous navigation capabilities will play an increasingly important role across various industries,
profoundly transforming human production and lifestyles.
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